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Summary. It is known that the exceedance points of a hiqh level by a stationary

sequence are asymptotically Poisson as the level increases, under appropriate

lone range and local dependence conditions. When the local dependence

conditions are relaxed, clustering of exceedances may occur, based on Poisson

positions for the clusters. In this paper a detailed analysis of the exceedance

point process is given, and shows that, under wide conditions, any limiting

point process for exceedances is necessarily compound Poisson. Sufficient

* conditions are also qiven for the existence of such a limit. The limitin.

distributions of extreme order statistics are derived as corollaries.
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.1. Introduction

Many problems in extremal theorymay be most naturally and profitably P

discussed in terms of certain underlying point processes. Typically one is

* interested in the limit of a sequence of point processes obtained from extremal

considerations, and it is often the case that a Poisson convergence result can ,

be derived. For example, Pickands [13], Resnick (14] and Shorrock [7] all

consider point processes involving "record times" in i.i.d. settings - a research

direction which was initiated by the works of Dwass ([2]) and Lamperti ([6])

on extremal processes. Resnick [15] further noted that many results in this

setting can be derived from a "Complete Poisson Convergence Theorem" in two

dimensions. .

It is known that the i.i.d. assumption can often be relaxed. For exan'nle

* Leadbetter [8] considers the point process of exceedances of a high level un

by a stationary sequence Ili (i.e. points where .i > Un), obtaininq Poisson

limits under quite weak dependence restrictions. These involve a lono ranae

dependence condition "D(un)" of mixinq type, but much weaker than strono
n

mixing, and a local dependence condition "D'(Un)". Adler [1] qeneralizes

Resnick's two dimensional result in [15] by assuming the conditions D and D.

In results of this kind, the long range dependence condition (e.g. D(un)) is used
n

to give asymptotic independence of exceedances whereas the local restriction

(e.g. D'(un)) avoids clustering of exceedances. As a result in the limit, the

point process under consideration behaves just like one obtained from an i.i.d.

sequence. If the local condition is weakened or omitted, then clustering of

exceedances may occur. This clustering does not materially affect the asymptotic

distribution of the maximum, but significantly chanqes those of all other

extreme order statistics. Some such situations have been considered. For

example, Rootzen (6] studies the exceedance point process for a class of stable

. . .. .,.............-'-.. '-.. .-. . - .. ... .-. --.-.. . . . '. -. -. '.- .' .. .- --. .'""-- 2'..." .,.. ' - -- -''- ... ' , . . " ' - "" . - '- " . ". '
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processes. Leadbetter [9] considers Poisson results for cluster centers which

yield the asymptotic distribution of the sequence maxima but not of other -

order statistics. Mori [12] characterizes the limit of a sequence of point

processes in two dimensions under stronq-mixing.

Our aim in this work is to study the detailed structure of the limiting ..

forms of exceedance point processes under broad assumptions - especially when

clusterinq may occur. The results yield, in particular, the asymptotic distri-

butions of extreme order statistics in the more general form required by the

presence of high local dependence.

In this paper we use the Laplace Transform functional to obtain the

desired point process convergence results. The relevant definitions and basic .

theorem are cited in Section 2 along with a discussion of the dependence con- -

ditions used, and preliminary results. The main results, given in Section 3,

both characterize all possible limits as compound Poisson processes, and

provide sufficient conditions for the existence of such limits. The Laplace

Transform approach is especially convenient for the main characterization

result, and is therefore used here instead of the point process convergence

criterion of Kallenberq which is often employed to give sufficient conditions

for the existence of limits (cf. [9], [4]).

As noted above (cf. also [9]) the presence of exceedance clustering does - -

not affect the asymptotic distribution of the maximum. It does, however, alter

the asymptotic distributions of other order statistics, by virtue of the fact

that e.g. the second largest value may now occur in the same cluster as the

largest. In Section 4 we apply the results of Section 3 to obtain specific

forms for the asymptotic distributions of extreme order statistics in terms of

the relevant extreme value distributions of extreme value distribution for the

-

... .°. . ,. . -

........... . . ....... .......... .. . ...............
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maximum, and the cluster size distributions.

Finally we note that corresponding multi-level theorems and qeneralizations

of the two-dimensional point process result of [11] may be found in the thesis

*[3]. .;-.

2. Preliminaries and Framework

A point process ri on [0,I] is a randon element in the space of integer-

valued Borel measures on [0,1] with the vague topoloqy and Borel o-field.

The function L (f) = E exp(-f[O,1]fdrl) defined on the set of non-neqative

measurable functions on [0,1] is said to be the Laplace Transform of q. As

in the case of random variables, L (f) completely determines the distribution p

of n. The following result is useful.

Theorem 2.1. Suppose ri, ri1,nr2 ,... are point processes on [0,I]. Then rin

converges in distribution to ri if and only if L - L (f) for each non-neativeri nncontinuous function f on [0,1]. In this case ffdn converges in distribution

to ffdn for each bounded measurable function f whose points of discontinuity

constitute a set of zero r-measure a.s.

See, for example, [5] for a proof of Theorem 2.1 and a detailed account of

the theory of point processes.

Throughout, rl..r.2,... will be a stationary sequence of random variables.

Write M(I) = max (.i: i I) for any set I of integers, and Mn  max( i: l<i<n).

Assume that the common distribution function F satisfies (l-F(x))/(l-F(x-))+l

as x x~ sup (u: F(u) < 1), which ensures (cf. [10], Theorem 1.1.13) the

existence of a sequence un1 such that
nI

.. i
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(2.1) I-F(u('T))-. "V n a s n - ,-.
(T)

for each T > 0. Let x be the indicator of the event (r.. > u( , jl,...,n)

and N ()the point process on [0,1] with points (j/n: 1 < j < n for which

> • This is, N(T) is the point process (on [0,1]) of exceedances of
j n ) Ti s n ,;

the "level" u(n by the random variables F1 ,... Fn after "time-normalization" by
( ) n {( 'r)

the factor I/n. Suppose {Un I. and fu2 are two different sequences satisfy-

inq (2.), and N (T)  N(T ) are the corresponding point processes defined asr n,l n,2

above. Then

p{N(T) N(T)) < nIF(u(t)) F(u(i))1 0 as n

n,l n,2 - n,l - n,2

by (2.1). Since we are only interested in weak converqence results, the choice --

of{U f  )I thus need not be specific, and indeed we can use any convenient fun

satisfying (2.1) for our purposes.

We turn now to the type of long range dependence condition appropriate

for the present context. If {u } is a sequence of constants, for each n,i,jn

with I < i < < n, define 1 ) to be the (-field generated by the events

( sUn), i < s < j. Also for each n and 1 s < n-l, write

I n, = max (U P(A n B) - P(A)P(B)I: A B (Un) B k+? (un)).

{f.} is said to satisfy the condition A(un) if a as n.

sequence= o(n) The array of constants an =l,2,..,n--.

will be referred to as the mixing coefficients of the condition A(u n) whenever

there is no danger of causing ambiguity. It is worth notinq that the condition

A(un) is stronger than the distributional mixing condition D(un) (cf. [10]),

but weaker than stronq-mixinq. For our purposes, u will always be un for

.. .......... ............. .....-............. .



5 S

some T > 0. Since there are only a finite number of events involved for each

n, the condition A(un ) can be easily verified in some cases. Indeed, the
tn

strong mixing condition is "unnecessarily strong" for most situations in

the study of extreme value theory in that it poses restrictions not just on

the extremal but on the overall behavior of the underlying sequence. "

The condition A(un) can be expressed in terms of random variables asn

well. The following result is a special case of [18], equation (V).

Lemma 2.2. For each n and l<t<n-l, write R

6 = sup (IEYZ-EY.EZI: Y and Z measurable with respect to
n,e

Bl(Un) and n'+ (u ) respectively, 0 < Y, Z < 1, 1 < , < n-(.) -'
Sn j+1 n_

Then an , < B _ l&n where an( is the mixing coefficient of the :ondition

A(un). In particular, F, satisfies the condition A(un) if and only if
n .jn

Rn, - 0 for someI {fn with f n = o(n).

Loynes [11] generalized the classical Extremal Types Theorem by noticing

that the maxima of f{.j} over appropriately chosen sets in 1,2,...,n are

asymptotically independent when {fnI is strongly mixing. The technique has

been widely used in various forms since then, and the partition that we use

here is similar in spirit to that in [9]. Specifically the random variables

a{ i are separated into successive groups (V ... ) (n2r
n n '2 n

of rn consecutive terms (for appropriately chosen rn). Then all exceedances ofn n

un within a group are regarded as forminq a cluster. The following lemma

shows that the separate clusters are asymptotically independent.

Lemma 2.3 Let T > 0 be a constant and let the condition ^(u T hold for the

stationary sequence fr, 1. Suppose fk I is a sequence of inteqers for which p
3 n

there exists a sequence {n I such that
n

- ....... •• . . . . . . . .
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(2.2) knfn/n 0

and

(2.3) k a 0n njr
n

where a is the mixing coefficient of the condition A(u)). Then for each.
n

non-neqative measurable function f on [0,I],

k ir
n , ) n n Fr)

(2.4) E exp(- Y f(j/n)xn) - It E exp(- ) f(./n).n .) 0
j=l njPjlil j=(i-l)rn +1

where rn [n/kn.

Proof. For simplicity of notation, write un=unr) and X n,j-n,j . Divide

1,2,...,n into sets of consecutive integers 1,,I 2,l I....,Ikn I where
n n

I I. ((j-l)r +l,...,ir-n It (jrn-f +1,...,jr 1
n n n ,Jrn  n

=((k -1)r +1,...,k r f I* (k r +1,...,n). Thus each set I.
n n n nn n kn = n n

contains rn-_n integers, with each It except I* having f integers, and

I* having n-k r +f < kn+fn (since rn:[n/kn])" By the non-negativity of fn nn n n n n
n

and since if X njO for some j.I* then M( *) u , it is readily seen that
1i 1 n

kn n

0 < E exp(- X f(j/n)x nj) - E exp(-y f(j/n)y n,,)-i=l j li. j~l..--_

< (kn - )P{M ) > u1 I+ P"M(I* ) I

(2.5) n

[(knl)t n + (kn+fn)] PU. 1 * un I

k n( n+l)Tnn -- 0 as n-,m.
n

by (2.1). It follows by Lemma 2.2 and an obvious induction that

.*,o*.* .* . . .. * *

2 , 
,- .. 

.
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k kn-.,

(2.6) tE exp(-y Y f(j/n)n) - If E exp(-y f(j/n)x < 16 kn£n-(2.6) nIE- nrn
ie l j.i i=l jl i  n

which tends to zero by (2.3). Finally, using the basic inequality

k k k
(2.7) I PI yi-11 xil X lYi-xi, 0 Yi xi < I, i=l,2,...,k,P1i~ iPl - *i -

we conclude that
kn k ir"

kn
(2.8) i[ E exp(-j f(j/n)xn.) - iE exp(-. f(,n) j )I

i=l j, Inj i=l j=(i-1)r n +1.)

k ir

< JE exp(-Y, f(j/n)xn.) - E exp(-y f(j/n)y n,)I

1=1 n~j j=(i-1)r +1 ,.n n

n nnk n fn /n - 0 a s n - , -

by (2.2). The result now follows by combining (2.5), (2.6) and (2.8). P

3. Compound Poisson Converenc

Our main purpose in this section is to characterize any distributional

limit N(7) for the exceedance point processes 4Nn } when local dependence assump-

tions are not made and clustering of exceedances may thus occur. As noted in

Section 2 (and discussed in more detail in [9)) the exceedances (if any) in

each interval (1,2,...,r n), (rn +1,... ,2rn )... may be regarded as forminq the

clusters, with rn appropriately chosen. For each n the cluster size distribution

may thus be regarded as the distribution of the number of exceedances in an

interval which contains at least one, i.e. by stationarity

. - . .......-.......
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r r

(13.1) 'HP{i (T P{~x) i x (X)> L 1=,,..

where, as previously, X is the indicator of the event 1V. > U n I. It will

be shown in Theorem 3.2 that any limit in distribution for the exceedance

point process N(T is necessarily compound Poisson with atom sizes havinon

distribution 'idil = lim {Bnfi. The foltlowing result is a technical lenma for

use in the proof of the main theorem.

Lemma 3.1. Let -i > 0 be a constant. Suppose that the condition A(u (T) ) holds

for {ff I} and there exists a constant 0 ([0,1] s-ich that lim PfM. < %[I-O

For a fixed continuous function f on [0,11 and a sequence fk I which tends to infinity
n

and satisfies (2.2), (2.3), define functions Rn R on [0,1] bynn
k ir

n nn(
i=l j=(i-1)r +1 n jj iil)rn fin]

kn ir
nn (T)

Rn (t) = '(1-E exp(-f(t) Y~j 1 Mt
P1l j=(i-l)ri+l ((l r., ir n]

where rn [n/k 1.Then as n
nn

(i -_ (R (t) -R (t) 0 uniformly in t,r n n n

(i)-R (t) - 0-tf-t) itjl 1 (t -0 uniformlyrn n ~ l n (09k nr /n](t

in t, where {j} is defined by (3.1).
n
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.= r (I- ? e-f(t)j i n { i }) 1 knr (t)(l + o(1))
j=l (0,-nfn--]

n

since k r /n 1 1, and where the o(l) term is uniform in t. The conclusion
n n

(ii) now follows at once. 11

The main result is now readily obtained.

0-)Theorem 3.2. Suppose T > 0 is a constant and the condition A(u ) holds for

the stationary sequence {r,J. If N(-r) converges in distribution to some point
n

process N then the latter must be a Compound Poisson Process with a Laplace

Transform of the form

- (3.2) exp { OT J (1 - L(f(t))] dt}10

where L is the Laplace Transform of some probability measure ,n on 1,2,...} -

and 0 - ¥I log lim P{M < u T)} C (0,1]. If 0 $ 0, then rli = lim v n{i}..- n- n- n

. where is defined by (3.1) for any sequence {k which tends to infinity andn n
satisfies (2.2), (2.3).

.. Proof. Again we suppress the superscript T for the simplicity of notation.
By Theorem 2.1, the assumption that Nn converges In distribution implies that L

Nn([Ol]) converges in distribution since [0,1] has empty boundary (in itself).

. This implies, in particular, that P{M < u I P{N ([0,11) = 01 converqes asn - n n
n t. I follows from [9], Theorem 2.2 that there exists a constant 0 in

_-, T

[0,1] such that P{Mn < un} - e 8 '. If 0 = o, the conclusion follows trivially.

Assume now that a > 0, and let Rn and Rn be as defined in Lemma 3.1 for a

fixed non-negative continuous function f, and a sequence 1k n which tends to

.- '-. .-.....--.............. ...-.-.... , . ...... .... . . .--.. . . . . . .-



infinity and satisfies (2.2), (2.3). By Lemma 2.3, since the first term

of (2.4) has a non zero limit the ratio of the two terms tends to one and hence p.

n
log E exp(- fdN ) = log E exp(-y f(j/n)).-'

[0,l] n j=l nJ

k ir .
log E exp( +Jf(j/n)x J) + o(l)

ij (i-1)r n  .

k irn
n

(3.3) = (n/rn) . (rn/n) log{l - [I-E exp(-X f(j/n)Xn j)]} + o(l)
i=l j=(i-l)rn+1 .

(n/rn )  log - Rn(t)] dt + o(l).

2
Write ip(x) = -log(l-x) - x, x [0,1), so that (x) x /2 as x 0. Hence

for large n, lp(Rn(t)) <_ R (t) for all t [0,1] since clearly Rn(t) 0

- .uniformly in t by Lemma 3.1, showing that

(3.4) (n/rn) j1h(Rn(t))Jdt < n [n_ Rn(t)] dt 0n 0 -n 10 r n n"

since ((n/r )R (t) is uniformly bounded and r /n -0 0. Combininq (3.3), (3.4)

n n n
and Lemma 3.1, it follows that

( 1 1

log E exp(-[ f d Nn) = -(n/rn) f Rn(t)dt - (n/r) f i(Rn(t))dt + o(1)
0 0

A ,., I
. -oi f( - ) e-f(t)J n f{J)dt + o(1)

0 j=l

L" " . .
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This converges as n - by the assumption that Nn converqes in distribution.

But this implies in particular that the limit lim T e-S' 1. exists for
4n-  j=I

each s > 0, which is equivalent to the existence of a measure ii on {1,2,3,....

such that r{j} lim -ntinW, j=l,2,..., and in this case
n-

lim X e-S71 in = .e5'j fj}, s I 0.
n- j=l i-l

3

It now follows from Theorem 1.1 that

E exp(- f fdN) lim E exp(- fdN n)f[O1l1 n-o [I]lfn'

" = exp {-OT 0o~- e e' () ) dtl .
0n

where n is necessarily a probability measure. F

When 0 0 0, the probability measure n in the theorem is obviously restricted

to a certain class; for example, by Fatou's Lemma and stationarity,

o i o i[n/kn] (T) [n/kn] ()1iTIi Mi  :i- i l i m Pf Xni i  > 01

lim pn rn/kn] (T) [n/k (T)

". < lim inf ., i { ! n,. -- i/Pf Y. Xn > O0 1

n i l jex n = jIl = j

[ n / k n ( -""

= lim inf (kn /T). E( Xn,j ) =
j=l n j-

The precise relationship between 0 and r is still an open problem.

"L

..................................................................................................... .
.. . . . . . . .. . . .-.. . .

. . . . . . . . . . . . . . . . . . . .. . . . . . .•. " . . . .... . .,-,. . . •* •.
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Theorem 3.2 shows that under broad conditions any limit for the exceedance

point process must be compound Poisson. On the other hand, a constructive result

may also be stated as follows.

Theorem 3.3. Assume that the stationary sequence {r.} satisfies the condition

A(u ()) for some i > 0 and that lim P(M < uj for some 0 (O,1]
n.,- n - n

Suppose there exists a sequence {k I which tends to infinity and satisfiesn
(2.2), (2.3), and for which the limit mfi} = lim -n nil exists for each

n- oo

i=l,2,... (where {n il is defined by (3.1)). Then v is a probability measure,

and N(T) converges in distribution to a Co'"nound Ooisson nrocess with Laplacen ef(t)i 0
Transform exo (-Or f0 (- e e i{i))dt).

10 1

Proof. The assertions follow from arguments similar to those in Theorem 3.2

* provided that .r is a probability, or that the family fmn I of probability

measures is tight, which follows readily since lim 'T= ilr {i} = 1/0 <
1=1 nn-on7

(cf. (3.6)). l

In this result existence of the limit lim rn(i) was assumed. Some

particular sufficient conditions for this may be found in [4], where a result

similar to Theorem 3.3 is proven by other methods.

The next result shows that when the conditions of Theorem 3.2 hold for

all 0 0 then the parameter 0 and the cluster size distribution for the

limiting process are independent of i.

Theorem 3.4. Suppose that for each t > 0, the stationary sequence {F.I satisfies

the condition A(N  ) and N converges in distribution to some point processn n
NO ). Then NO ) is a Compound Poisson Process with Laplace Transform

"- "'-7" ;'~~~.'-.2°.. .. •..... ". . .. ''.-.-....."""..'.: .'. "" ., " " "......... " .

. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . .
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exp{-OT J1 - Lof )dt} where 0 and L are determined as in Theorem 3.2, o

,. and L being independent of T.

Proof. By the representation (3.2), it suffices to show that

TI1

lim LN ) M (lim LN(. )(f)) for each 11,12 > 0 and each non-neqative

continuous function f. For simplicity, we only consider the case T1 =T<l

and T2=1, the proof for the other choices of T1 ,T 2 being similar. Let f be

a fixed non-negative continuous function on [0,1, and

gx f(X/T), 0 < x < I.

It is readily seen that
Fnl~tl

L() (g)= E exp(- [Tg(j/[n/] I = E exp(- (1) ,-
LN) [n/p(-j q~/f~~)jl E Q n/"])[n/T],j
[niTI j=l j=l

since (n+l)/[n/T] > T. Thus

IL. (f) -L (g)

n [niT)
n n (I (T)

E exp(-j f(j/n)xn,j ) - E exp(-y f(j/[n/)x
,'-j=l +."=l [n/ T]

< E exp(-y f(i/n)x E ex) gj/n)x r) +
j=l ,i I 1

+ Eep- (j/ ) E exp(-j g(j/[n/T])X~nT, ]]
-~ ~ ~ = +Eep-i(n)[n/T],,i .°l

It follows from Inequality (2.7) that the two terms in the last expression

.. .. . .. ............. ...-. Z. .._.._r,, . ......... .. ,. . . .........



15

are bounded by, respectively,

nlF(uT)) - uu (1) e-q(j/n/r]) e-f(j/n)
n [n/1] sup +e -eK 0o))

:<j<n

where both expressions tend to zero. In view of Theorem 3.2, the Laplace

Transform of N(l is exp -0 f (l-Lf) dtl for some 0 and L. The above

derivations imply that

L(T)(f) = lim L (1)(f) lim L,1l(g) exp {-0 (1 - aLo)dtl
n-N"' N n, N 0

1exp {-(oif (1 - Lf)dt} l'

where the last equality holds by a chanqe of variable. This concludes the

proof.

It is worth noting that the theorems stated in this section can be

extended without further effort to considerations of joint exceedances of

finitely many levels. With results of this kind, so-called "complete conver-

qence" theorems may be obtained. A separate paper is planned on this topic.

4. Applications and Examples

First we apply our convergence results to problems that are of concern in

....the more traditional theory. Let Mk) be the kth largest amonq rI 2 ,..., n.

It is obvious that (M-k) - k-l) is the same event as (N(") < k-l). Using thisn - n ---...

fact, one can derive asyintotic distributions for properly normalized M(k)

n

*----

..............................................................................................
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Theorem 4.1. Suppose that for each T > 0, A(u(7)) holds for {1i.1 and N(T)
n n

converqes in distribution to some non-trivial point process M(i). Assume

that a > 0, b are constants such thatin n

(4.1) P{an(M - bn) < x) G(x)

for some non-decienerate distribution function Gn (necessarily of extreme value

type). Then for each k = 1,2,...,

lim Pa (M k) - b) < x
n- n n n

k-i k-i (-log G(x))'
(4.2) = G(x) [1 + f ' r,*J{i}] -

j=1 ij J

(where G(x) > 0, and zero where G(x) 0), where for j I is the j-fold %

convolution of the probability -i defined by i(1 = lira ,n1 i i = 1,2,.. 'We
n- , .. -.

Tn beinq given by (3.1) with any T > 0 and any sequence fkn I as described in

Theorem 3.2.

(T)

Proof: According to Theorem 3.4, the Laplace Transform of N 0, is

given by (3.2) where (0 (0,1] is such that PMn < un ) } e and L the

Laplace Transform of the probability measure TI stated in Theorem 3.4, 0 and
d

L being independent of i. Since P{a (M - b ) < x) - G(x), Theorem 2.5 of
n n n-

[9] implies that G is one of the three extreme value type distributions, and

lim Pla (Mn  bn) x = Gl  (x) where M is the maximum of n independent
n-o n n b n <-1er n i h aiu

random variables all having the same distributions as I" Thus

lim P{Mn < a'( (ee+) b)))= e"T

., . . .
'-

- Ilia&,
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which shows by Theorem 1.5.1 of [10] that

1 F(an Gl(e"OT) + bn ) i/n as n -.n n

Writing (x) = -loq G l/ (x), we thus have

(4.3) 1- F(an x+b) .T(x)/n.

Now it follows from (3.2), (4.3) and the fact that NT)([OI]) d> N('([0,I])

(cf. Theorem 2.1) that

lim Pfan(Mn - bn < xl = lir P{M n u U((x)}.

lir P{N (X))([0,1]) < k-1i = P{N(T(x)(O,1]) < k-l1n_

-Ot(x[1 k- ) k-i
l ) l*J(i)]
j :l • i :j

which gives (4.2) since e- (x) = G(x).

We end with two examples which illustrate the theory.

Example 4.2. A trivial example of a case where clustering occurs is given

byr = max(rj,njl) where {n.1 is an i.i.d. sequence. In this case 0 = 1/2,

clusters have size 2 (in the limit) and the limiting distribution (4.2) for

M(k) becomiesn

"lira Pan(Mk)- b) X} G(x)[l [(k-l)/2] (-log G ]x))3

j=l J"

where G, a n bn are as in (4.1). This is an obvious modification of the

t ..

. . . . .
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classical result and simply reflects the fact that exceedances occur

(predominantly) in pairs.

A more interesting example, with stochastic cluster sizes, is the following:

Example 4.3. Consider the sequence

k
.j : max pZ

k>O Zjk

where O<p<l and {Z1 is an i.i.d. sequence with common d.f. exp(-l/x), x > 0.

This example was due to L. de Haan who showed that fr.l} has extremal index

I- 1 - p ((cf. (9]), which can be any value between zero and one. It can

be shown by some calculation (cf. [3], Chapter Five) that the limits (3.4)

exist and are given by i{il = i-l P). It then follows from Theorem 3.3

that N n ) converges in distribution to a Compound Poisson Process with

Laplace Transform exp{-(l - p)i f1 (1- yj ,(jlef(t))dt).

In particular the limiting cluster sizes follow a geometric distribu-

tion.
ID

S S

. .. .. . . . . . . .. "
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